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It is well-known that the classical Chapman-Enskog procedure does not work at the
level of Burnett equations (the next step after the Navier-Stokes equations). Roughly
speaking, the reason is that the solutions of higher equations of hydrodynamics (Bur-
nett’s, etc.) become unstable with respect to short-wave perturbations. This problem
was recently attacked by several authors who proposed different ways to deal with it.
We present in this paper one of possible alternatives. First we deduce a criterion for
hyperbolicity of Burnett equations for the general molecular model and show that this
criterion is not fulfilled in most typical cases. Then we discuss in more detail the problem
of truncation of the Chapman-Enskog expansion and show that the way of truncation
is not unique. The general idea of changes of coordinates (based on analogy with the
theory of dynamical systems) leads finally to nonlinear Hyperbolic Burnett Equations
(HBEs) without using any information beyond the classical Burnett equations. It is
proved that HBEs satisfy the linearized H -theorem. The linear version of the problem
is studied in more detail, the complete Chapman-Enskog expansion is given for the
linear case. A simplified proof of the Slemrod identity for Burnett coefficients is also
given.

KEY WORDS: Boltzmann equation; Chapman-Enskog method; Burnett equations;
hyperbolicity; Perturbation theory; Hydrodynamics.

1. INTRODUCTION

The main objective of this paper is to clarify some aspects of the classical
Chapman-Enskog method that bridges the gap between the Boltzmann equation
and hydrodynamics. The well-known result of this method is a systematic way of
derivation of equations of hydrodynamics having formally any given order of accu-
racy with respect to the Knudsen number ε (mean free path divided by macroscopic
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length). Thus we obtain the sequence: Euler equations, Navier-Stokes equations,
Burnett equations, etc.

This is how the Chapman-Enskog method is presented in some old books
on classical kinetic theory of gases [8, 16]. On the other hand, Cercignani, in his
books, always expressed certain scepticism with respect to higher equations of
hydrodynamics, in particular because of uncertainty in boundary conditions [6, 7]
(see also [4]). The scepticism was shared by some other authors [10]. Another
reason for doubts (not related to boundary conditions) became clear in 1982,
when it was proved that Burnett equations for Maxwell molecules are ill-posed
[5]. In more physical terms, one can say that any solution of Burnett equations
(in particular, the constant equilibrium solution) is unstable with respect to short-
wave perturbations (the instability paradox, in terminology of Jin-Slemrod [14]).
Attempts to overcome this difficulty were made in last two decades by several
authors (see, in particular, papers [11, 18] on the linearized problem and papers
[14, 19, 20, 22, 23] on the nonlinear problem). A comprehensive review of different
approaches and a complete list of references can be found in [20, 23]. We also
mention recent talks by Levermore [17]. All the above approaches are based on a
combination of the Chapman-Enskog method with moment methods and on using
some higher order in ε terms for regularization of the Burnett equations.

An alternative method considered below does not use any information “be-
yond the Burnett level” and is based on the following simple idea. Let us consider
a general evolution equation for a vector x(t)

xt = T (x ; ε) = A(x) + εB(x) + ε2C(x) + . . . ,

where A, B, C , . . . are time-independent differentiable nonlinear operators. In
our case x(t) is understood as the vector of hydrodynamical variables, whereas
A(x), B(x) and C(x) represent Euler, Navier-Stokes and Burnett terms respec-
tively. A correct remark by Slemrod is that the problem is related not to the
Chapman-Enskog expansion itself, but to its truncation at the Burnett level. His
approach [14, 19, 20] is, however, quite different from ours.

We consider more carefully the problem of truncation. An obvious observa-
tion is that the truncation depends on a choice of coordinates. A formally invertible
(for ε → 0) change of variables

y = x + ε2 R(x) ⇒ x = y − ε2 R(y) + . . . ,

with an arbitrary time-independent differentiable operator R, leads to the equation

yt = T̃ (y; ε) = A(y) + εB(y) + ε2C̃(y) + . . . , C̃(y)

= C(y) + R′
y A(y) − A′

y R(y),

where R′
y and A′

y are the Fréchet derivatives (linear operators) of R(y) and A(y)
respectively. Thus, the result of truncation at the level O(ε2) depends, generally
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speaking, on an arbitrary operator R (or, equivalently, on a choice of coordinates).
The same, of course, can be done at any order O(εn), n ≥ 1. Note that even the
classical Navier-Stokes equations for n = 1 are not uniquely defined in this sense.
A remaining non-trivial problem is to choose new coordinates (the operator R) in
the most reasonable way. Similar ideas are widely used in the theory of dynamical
systems, see, for example, the Poincaré method of normal forms [1].

The paper is organized as follows. In Section 2 we transform the Boltzmann
equation in such a way that makes the Navier-Stokes equations almost obvious and
clearly indicates “what is missing in Navier-Stokes equations” as compared to the
Boltzmann equation. Then the Burnett equations arise quite naturally as the first
correction to Navier-Stokes equations in Section 3 We consider these equations
under very general assumptions on intermolecular forces and derive a criterion
for hyperbolicity of Burnett equations. The criterion roughly means that they are
hyperbolic in a very narrow interval 1 ≤ Pr ≤ 5/4 of Prandtl numbers (in contrast
to the realistic value Pr ≈ 2/3). In order to clarify a mathematical reason for the
instability paradox, we consider in Sections 4,5 the linearized problem. Then the
idea of change of variables arises quite naturally and we consider in Section 6
an appropriate family of transformations of equations of hydrodynamics. This
leads to hyperbolic Burnett equations (HBEs) that satisfy a linearized version of
H -theorem (Section 7). The hyperbolic Burnett equations are discussed in detail
in Section 8 This section contains all necessary information for practical use of
HBEs. As a by-product result, a simplified proof of the Slemrod identity [21] is
given at the end of Section 8 The complete Chapman-Enskog expansion for a
broad class of linear equations (the linearized Boltzmann equation belongs to this
class) is described in Appendix.

The reader who is not interested in mathematical aspects of the problem
can skip Sections 4,5 and proceed directly to Section 6. On the other hand, Sec-
tions 4,5 and Appendix, based on classical perturbation theory for linear opera-
tors [15], are important for clarifying the mathematical nature of the instability
paradox (loss of symmetry for approximate linear evolution operators). The gen-
eral structure of the complete Chapman-Enskog expansion (Appendix) makes the
above sketched change of coordinates quite natural from mathematical point of
view.

We do not know yet whether or not any nonlinear version of H -theorem holds
for HBEs (such versions are proved for some other methods of regularization
of Burnett equations [14, 21]). A connection of HBEs with thermodynamics is
another interesting open problem.

In order to avoid a misunderstanding we note that the above discussed
difficulties with the Chapman-Enskog method are typical for the Euler limit.
An alternative scaling that leads to the incompressible Navier-Stokes equations
[3, 9], seems to be in complete agreement with corresponding Chapman-Enskog
expansion [13].
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2. TRANSFORMATION OF THE BOLTZMANN EQUATION

We consider the Boltzmann equation [7]

D f = 1

ε
Q ( f, f ) ,D = ∂ t + v · ∂x , (1)

for the distribution function f (x, v, t ; ε), where the variables x ∈ R
3, v ∈ R

3

and t > 0 correspond respectively to position, velocity and time; the param-
eter ε > 0 denotes the Knudsen number. The Boltzmann collision operator
reads

Q ( f, f ) =
∫

R
3×S2

dwdω |u| σ
(

|u| , u · ω

|u|
)[

f (v
′
) f (w

′
) − f (v) f (w)

]
,

u = v − w,ω ∈ S
2, v

′ = 1

2
(v + w + |u| ω), w

′ = 1

2
(v + w − |u| ω), (2)

where σ (|u| , cos θ ) is the differential cross-section that corresponds to the scatter-
ing angle θ ∈ [0, π ] (irrelevant arguments x, t and ε of the function f are omitted
in Eq. (2)).

We denote for brevity

〈 f, g〉 = 〈 f g〉 =
∫
R3

dv f (v) g (v) (3)

and introduce the so-called hydrodynamic variables (the density ρ, the bulk ve-
locity u ∈ R

3 and the temperature T )

ρ = 〈 f 〉 , ρu = 〈 f, v〉 , ρT = 1

3

〈
f, |c|2〉 , c = v − u. (4)

We shall use below just a few basic properties of the collision integral:

(A) 〈�, Q ( f, f )〉 = 0, for any f (v) if and only if � = � (v) ∈
Span

(
1, v, |v|2);

(B) Q ( f, f ) = 0, f ≥ 0, if and only if f = exp
(
α + β · v − γ |v|2), where

α ∈ R, β ∈ R
3, γ ∈ R+ are any constant parameters.

All considerations in this paper are quite formal and therefore we assume in
advance that the cross-section σ (|u| , cos θ ) in Eq. (2) and the solution f of Eq.
(1) satisfy all necessary restrictions such that all integrals are convergent, etc. In
order to describe an asymptotic behavior of f (x, v, t ; ε) for small positive ε we
introduce the Maxwellian distribution

M = (2πT )−3/2 exp

(
−|c|2

2T

)
, c = v − u, (5)
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and represent the solution of Eq. (1) as a sum

f = ρM + εF, (6)

where ρ(x, t ; ε), u(x, t ; ε), T (x, t ; ε), correspond to the “true” hydrodynamic
moments of f . Hence,

〈�, F〉 = 0, 〈�,DρM〉 + ε 〈�,DF〉 = 0, (7)

for any � ∈ Span(1, v, |v|2right). This leads to the usual set of hydrodynamic
conservation laws

ρt + div ρu = 0,
∂

∂t
ρuα + ∂

∂xβ

(
ρuαuβ + pδαβ + επαβ

) = 0,

∂

∂t
ρ
(|u|2 + 3T

) + div ρu
(|u|2 + 5T

) + 2ε
∂

∂xα

(
παβuβ + qα

) = 0, (8)

where

p = ρT, παβ = 〈
F, cαcβ

〉
, qα = 1

2

〈
cα |c|2 , F

〉
, α, β = 1, 2, 3. (9)

The usual rule of summation over repeating indexes is assumed here and below.
The equation for F(x, v, t ; ε) reads

DρM + εDF = ρM L (F/M) + εQ (F, F) , (10)

where the linearized collision operator L is defined by the equality

Q (M, Mg) + Q (Mg, M) = M Lg. (11)

We denote by H the Hilbert space with the scalar product

〈g1, g2〉M = 〈Mg1, g2〉 (12)

and consider L as an operator acting from H to H. We shall use the following basic
properties of L (in addition to properties (A) and (B) of the nonlinear operator
Q):

(C) Lg = 0 if and only if g ∈ N (L) = Span
(
1, v, |v|2);

(D) L is self-adjoint and semi-negative operator, i.e.

〈g1, Lg2〉M = 〈Lg1, g2〉M , 〈g, Lg〉M ≤ 0; (13)

(E) H = N (L) ⊕ R (L), where R (L) = LH is a range of the operator L in H,
⊕ denotes the orthogonal sum (with respect to the scalar product (12)).

Then the problem

Lg = φ, g ∈ R (L) , φ ∈ R (L) (14)
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has a unique solution g = L−1φ. We extend the operator L−1 : R(L) → R(L) to
the whole H by introducing the linear operator L̃−1 : H → R(L) such that

L̃−1φ =
{

L−1φ, ifφ ∈ R (L)
0, ifφ ∈ N (L).

(15)

Then Eq. (10) can be transformed to

F = M

[
L̃−1(D ln ρM) + ε

ρ
L̃−1 DF − Q (F, F)

M

]
. (16)

We denote

Q̃(F) = Q(F, F), F0 = M L̃−1(D ln ρM) = − M L̃−1

(
cα · ∂

∂xα

|c|
2T

2)
, c = v − u,

(17)
the same notation c = v − u for the thermal velocity is often used below. Then,
omitting tildes, we obtain

F = F0 + ε

ρ
M L−1 DF − Q (F)

M
, (18)

where

F0 = M

[
1

T

∂uα

∂xβ

φαβ (c) + 1

T 2

∂T

∂xα

φα (c)

]
,

φαβ = L−1

(
cαcβ − |c|2

3
δαβ

)
, φα = L−1 cα

2
(|c|2 − 5T ). (19)

The general equation of hydrodynamics (the second equation (7) with any � ∈
Span

(
1, v, |v|2) independent of x and t) reads now

〈�,DρM〉 + ε
∂

∂xα

〈cα�, F0〉 + ε2 ∂

∂xα

1

ρ

〈
Mcα�, L−1 DF − Q (F)

M

〉
= 0.

(20)
The operator L−1 (15) is obviously self-adjoint in H and therefore we obtain

〈�,DρM〉 + ε
∂

∂xα

〈
�α (�) , c · ∂ M

∂x

〉
+ ε2 ∂

∂xα

1

ρ
〈�α (�) ,DF − Q (F)〉 = 0,

�α (�) = L−1 (cα�) ;� = 1, v, |v|2, (21)

where F satisfies Eq. (18). The equations (21) are obviously exact. If we neglect
the third term having the order O(ε2), then Eqs. (21) reduce to the classical Navier-
Stokes equations. Thus, the Navier-Stokes equations arise quite naturally (also for
the stationary Boltzmann equation with D = v · ∂x ). The difficulties begin with
the attempt to solve Eq. (18) for small positive ε and then to use the equations
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(21) with terms of order O(ε2) (Burnett equations). We consider this problem in
the next Section 3.

3. BURNETT EQUATIONS

The equation (18) can be written as

F = F0 + εF1 + O(ε2), F1 = 1

ρ
M L−1 DF0 − Q (F0)

M
, (22)

where F0 is given in Eq. (19). The Burnett equations are the equations (8) with

παβ = π N S
αβ + επ B

αβ, qα = q N S
α + εq B

α ,

π N S
αβ = 〈

F0, cαcβ

〉
, q N S

α = 1

2

〈
F0, cα |c|2〉 ,

π B
αβ = 〈

F1, cαcβ

〉
, q B

α = 1

2

〈
F1, cα |c|2〉 , (23)

plus the rule of calculation of DF0 in Eq. (22) (see below). We can represent the
Burnett terms in the equivalent form:

π B
αβ = 1

ρ

〈
φαβ,DF0 − Q (F0)

〉
, q B

α = 1

ρ
〈φα,DF0 − Q (F0)〉 (24)

in the notations (19). We note that

D0ρ = −ρdiv u,D0u = − 1

ρ
∇ p + O(ε),

D0T = −2

3
T div u + O(ε),D0 = ∂t + u · ∂x , (25)

and this explains the rule of calculation of the derivative

DF0 = D0 F0 + c · ∂ F0

∂x
,D0 = ∂t + u · ∂x , (26)

in Eqs. (22), (24): we should use the Euler formulas (25) and neglect all terms
O(ε). This completes the definition of the Burnett equations.

One can easily verify that Eqs. (24) can be transformed to the following form:

π B
αβ = D0 Pαβ + 1

ρ

[
∂

∂xγ

〈
cγ φαβ, F0

〉 − �αβ

]
,

q B
α = D0 Qα + 1

ρ

[
∂

∂xβ

〈
cβφα, F0

〉 − �α

]
, (27)
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where

Pαβ = 1

ρ

〈
F0, φαβ

〉
,�α = 〈F0,Dφα〉 + 〈φα, Q (F0)〉 ,

Qα = 1

ρ
〈F0, φα〉 ,�αβ = 〈

F0,Dφαβ

〉 + 〈
φαβ, Q (F0)

〉
. (28)

Eqs. (27) are more convenient for our goals, since the reminder terms �αβ and
�α are bilinear forms with respect to first derivatives of ρ, T and u. Therefore
they disappear in the linearized (near the constant solution) equation and do not
influence higher derivatives in the nonlinear equations. Therefore we concentrate
on the “main” terms in Eqs. (27).

The straightforward calculation of the integrals with F0 given in Eq. (19)
yields

Pαβ = A

ρ

∂uα

∂xβ

, Qα = B

ρ

∂T

∂xα

,
∂

∂xγ

〈
cγ φαβ, F0

〉 = ∂

∂xα

C
∂T

∂xβ

,

∂

∂xβ

〈
cβφα, F0

〉 = ∂

∂xβ

CT
∂uα

∂xβ

, (29)

where

aαβ = 1

2

(
aαβ + aβα − 2

3
δαβ T r a

)
, T r a = a11 + a22 + a33,

A = A (T ) = 1

5T

〈
φαβ, φαβ

〉
M

, B = B (T ) = 1

3T 2
〈φα, φα〉M ,

C = C (T ) = 1

5T 2

〈
cαφβ, φαβ

〉
M

. (30)

Then we use the identity

D0
∂

∂xβ

= ∂

∂xβ

D0 − ∂uγ

∂xβ

∂

∂xγ

(31)

and the above described rule for calculating D0ρ, D0u, D0T by Eqs. (25). Thus
we obtain

D0 Pαβ = − A

ρ

[
∂

∂xα

1

ρ

∂p

∂xβ

+ ∂uα

∂xγ

∂uγ

∂xβ

− α (T ) (div u)
∂uα

∂xβ

]
,

D0 Qα = − B

ρ

[
2

3

∂

∂xα

T div u + ∂uβ

∂xα

∂T

∂xβ

− β (T ) (div u)
∂T

∂xα

]
,

α (T ) = 1 − 2

3

T A
′
(T )

A (T )
, β (T ) = 1 − 2

3

T B
′
(T )

B (T )
. (32)
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Hence,

π B
αβ = − 1

ρ

[
�

(1)
αβ + �

(2)
αβ + �αβ

]
, q B

α = − 1

ρ

[
S(1)

α + S(2)
α + �α

]
, (33)

where

�
(1)
αβ = A

∂

∂xα

1

ρ

∂p

∂xβ

− ∂

∂xα

C
∂T

∂xβ

, p = ρT,

�
(2)
αβ = A

[
∂uα

∂xγ

∂uγ

∂xβ

− α (T )
∂uα

∂xβ

divu

]
,

S(1)
α = 2B

3

∂

∂xα

T divu − ∂

∂xβ

CT
∂uα

∂xβ

,

S(2)
α = B

∂T

∂xβ

[
∂uβ

∂xα

− β (T ) δαβdivu

]
, (34)

other notations are given in Eqs. (28), (30), (32).
These formulas are sufficient to explain why Burnett equations are ill-posed.

Considering just the terms with higher derivatives we transform Eqs. (8), (23),
(33) to

ρt = . . . ,
∂uα

∂t
= ε2

ρ2

∂�
(1)
αβ

∂xβ

+ . . . , Tt = 2

3

ε2

ρ2
divS(1) + . . . , (35)

where dots denote terms that do not contain third derivatives. Then, after simple
calculations, we obtain

ρt = . . . , ut = 2

3

ε2

ρ2

[
AT

ρ
� (∇ρ) + (A − C) � (∇T )

]
+ . . . ,

Tt =
(

2

3

)2
ε2

ρ2
T (B − C)�divu. (36)

It is sufficient to consider 1d solutions

ρ = ρ (x1, t) , u = {u1 (x1, t) , 0, 0} , T = T (x1, t) ,

then the matrix M of the coefficients for third derivatives reads 0 0 0
AT
ρ

0 A − C

0 2(B−C)T
3 0

 . (37)

Its non-zero eigenvalues are

λ± = ±
[

2

3
T (B − C)(A − C)

]1/2

.
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Hence, the hyperbolicity condition (under obvious assumption T > 0) reads

(B − C)(A − C) ≥ 0. (38)

It is easy to verify that this condition is not fulfilled in most typical molecular
models for the Boltzmann equation. In order to do this we use temporary notations

�αβ (c) = cαcβ − |c|2
3

δαβ,�α (c) = cα

2

(|c|2 − 5T
)

(39)

and represent the Navier-Stokes terms in Eqs. (23) by equalities

π N S
αβ = −2µ (T )

∂uα

∂xβ

, q N S
α = −λ (T )

∂T

∂xα

, (40)

where µ (T ) and λ (T ) denote respectively the coefficients of viscosity and heat
conductivity. It follows from Eq. (19) that

µ (T ) = − 1

10T

〈
φαβ,�αβ

〉
M

, λ (T ) = − 1

3T 2
〈φα,�α〉M . (41)

The usual approximation [8] for functions φαβ (c) and φα (c) (19) is given by

φαβ ≈ a (T ) �αβ (c) , φα ≈ b (T ) �α (c) , (42)

then

a (T ) = −µ (T )

T
, b (T ) = −2λ (T )

5T
(43)

since 〈
�αβ,�αβ

〉
M

= 10T 2, 〈�α,�α〉M = 15

2
T 3. (44)

The approximation (42) is exact for Maxwell molecules, moreover λ (T ) =
15µ (T ) /4 in that case. By using Eqs. (42), (43) we evaluate the integrals (30)
and obtain

A = 2
µ2

T
, B = 2λ2

5T
, C = 4λµ

5T
. (45)

Therefore

A − C = 4λµ

5T

(
5µ

2λ
− 1

)
, B − C = 2λ2

5T

(
1 − µ

λ

)
.

The ratio

Pr = 5

2

µ (T )

λ (T )
(46)

is called in fluid mechanics the Prandtl number (for monoatomic gases) [16]. It is
well known that the approximate equality Pr  2/3 (exact for Maxwell molecules)
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holds for all typical molecular models (hard spheres, etc.). On the other hand, the
hyperbolicity condition (38) can be approximately (under the assumption (42))
written as

1 ≤ Pr ≤ 5/4. (47)

The realistic value Pr = 2/3 obviously violates this condition. Therefore the
Burnett equations are probably ill-posed for all typical molecular models, though
our proof is rigorous just for Maxwell molecules (all above formulas are exact
in this case). We note that Pr = 1 for BGK model, however this model is too
unrealistic.

In the next section we consider a simplified (linear) version of the general
problem in order to understand why such irregularities appear in asymptotic ex-
pansions. Then it will be quite clear how to remove the irregularities.

The reader, who is interested just in fluid mechanics applications, can skip
Sections 4 and 5, and proceed directly to Section 6.

4. LINEARIZED BOLTZMANN EQUATION AND INSTABILITIES IN

ASYMPTOTIC EXPANSIONS

We consider the Boltzmann equation (1) and linearize the equation near the
standard absolute Maxwellian:

f = M0 + M1/2
0 g, M0 = (2π )−3/2 exp

(
−|v|2

2

)
. (48)

Neglecting the nonlinear on g terms we obtain

gt + v · gx = 1

ε
K g, K g = M−1/2

0

[
Q(M0, M1/2

0 g) + Q(M1/2
0 g, M0)

]
. (49)

It is well-known that the same Chapman-Enskog procedure can be used for
Eq. (49) (with obvious modifications) and it leads again to ill-posed linearized
Burnett equations [5]. The linear problem (49) is, however, much simpler and
it can be studied in detail. The following properties of K are important (see
properties (C), (D), (E) of the operator L in Section 2):

(C′) N(K ) = Span(M1/2
0 , M1/2

0 v, M1/2
0 |v|2);

(D′) 〈g1, K g2〉 = 〈K g1, g2〉, 〈g, K g〉 ≤ 0;
(E′) N(K ) ⊕ R(K ) = L2(R3),

where the scalar product is defined in Eq. (3) (the only reason to consider K ,
instead of L , is to avoid the Maxwellian weight in the scalar product).
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Then we make the Fourier transform

ĝ(k, v, t) =
∫
R3

dx g(x, v, t)e−ik·x (50)

and obtain

ĝt + ik · vĝ = 1

ε
K ĝ. (51)

It is convenient to forget about the Boltzmann equation for a while and to
study a more general problem related to Eq. (51).

Remark 1: The rest of Section 4 and Section 5 do not use any information about
the Boltzmann equation. Therefore we shall use in this part of the paper the same
letters A, B, P, Q, x, u, etc. without any connection with notations of Sections
2,3. Hopefully this will not cause any confusion for the reader.

Let E be a unitary space with the usual (complex) scalar product (·, ·). We
use below notations x, y, u, . . . for vectors of E and denote by capital letters
A, B, C, . . . linear operators. Subsets of E are denoted by bold capital letters
N, M, . . . . All our considerations can be justified rigorously if dim E < ∞ [15],
though they formally remain the same in the case dim E = ∞.

We consider the Cauchy problem for a vector u(t) ∈ E, t ≥ 0:

ut + i Bu + 1

ε
Au = 0, ε > 0, u|t=0 = u0, (52)

under the following assumptions about the operators A and B:

[i] both A and B are real and symmetric, i.e. A = A, B = B, (u1, Au2) =
(Au1, u2), (u1, Bu2) = (Bu1, u2);

[ii] A is semi-positive, i.e. (u, Au) ≥ 0 for any u ∈ E;
[iii] the equation Au = 0 has precisely 1 ≤ m ≤ dim E linearly independent

solutions u = eα , α = 1, . . . , m, then

N(A) = K er A = Span(e1, . . . , em). (53)

The image of A is denoted by R(A) = AE. We assume that E = N(A) ⊕ R(A),
this assumption is always fulfilled if dim E < ∞. Thus, the linearized Boltzmann
equation (51) is a particular case of Eq. (52).

The conditions [i], [ii] lead to the following identity

1

2

d

dt
‖u‖2 = −1

ε
(Au, u) ≤ 0, ‖u‖2 = (u, u), (54)
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i.e. the trivial solution u = 0 is the stable node for Eq. (52). Our goal in this section
is to understand why this property does not hold for the truncated Chapman-Enskog
expansion.

We denote

X = N(A), Y = R(A) = X⊥, dim X = m, (55)

and introduce an orthogonal projector P : E → X onto the subspace X.
Then

P A = AP = 0, P2 = P. (56)

The Chapman-Enskog method for Eq. (52) implies a decomposition

u = x + εy, x = Pu ∈ X, εy = (1 − P)u ∈ Y,

that leads to coupled equations

xt + i P B (x + εy) = 0, εyt + i(1 − P)B(x + εy) + Ay = 0. (57)

We denote by y = A−1z a unique solution of the problem

Ay = z, y ∈ Y, z ∈ Y,

and extend A−1 to the whole space E by equality

U = A−1(1 − P). (58)

Then the second equation (57) is equivalent to

y = −iU Bx − εU (yt + i By)

and therefore we obtain

xt + i P Bx + εP BU Bx = iε2 P BU (yt + i By). (59)

We note that

y = −iU Bx − O(ε), yt = −iU Bxt + O(ε) = −U B P Bx + O(ε), ε → 0.

This leads to a sequence of truncated “equations of hydrodynamics:”

(E) xt + i P Bx = 0; (N − S) xt + i P Bx + εP BU Bx = 0;

(B) xt + i P Bx + εP BU Bx = iε2 P BU (BU − U B P)Bx (60)

where the notations (E), (N − S), (B) correspond respectively to Euler, Navier-
Stokes and Burnett approximations.

We can now easily see what happens at the “Burnett level” of approximation.
Note that all operators U, B and P are real and symmetric. Since x ∈ X, we have

383



Bobylev

the identity Px = x and therefore P Bx = P B Px , etc.. Then each of the three
equations (60) can be written as

xt + i B̃(ε)x + ε Ãx = 0, ε > 0, x ∈ X, (61)

where Ã and B̃ are operators acting from X to X. The operators B̃(0) = P B P
and Ã = P BU B P are obviously symmetric, moreover ( Ãx, x) ≥ 0. Therefore
the identity similar to Eq. (54) leads to the equality ‖x(t)‖ = ‖x(0)‖ for Euler
equations and to the inequality ‖x(t)‖ ≤ ‖x(0)‖ for Navier-Stokes equations.
However, nothing like that can be proved for Burnett equations since B̃(ε) is not
symmetric for ε > 0.

The loss of symmetry is the real reason why the Burnett equations (related
to the Boltzmann equation (49)) are ill-posed. The matter is that the operator
B = k · v in Eq. (51) is proportional to |k| and the loss of symmetry of the
operator B̃(ε) in the Burnett equation becomes crucial when |k| → ∞.

The complete Chapman-Enskog expansion for Eq. (52) and its regularization
are discussed in detail in Appendix. This material, however, is not necessary if we
just want to understand what can be done at the Burnett level of truncation. We
consider this question in Section 6

5. REGULARIZATION

The general equation for x(t) obtained by the Chapman-Enskog method reads
(see Eqs. (60) , (61))

xt + i(B0 + ε2 B1)x + εA0x + . . . = 0, (62)

where dots denote terms of order O(εn), n ≥ 3,

B0 = P B P, A0 = P BU B P, B1 = P B(U 2 B P − U BU )B P (63)

If we neglect terms of order O(εn), n ≥ 3, then we obtain Burnett equations. This
is the simplest way of truncation of Eq. (62), but not the only one. Let us consider
a more general way of truncation.

We substitute x ∈ X in Eq. (62) by another variable z ∈ X such that

z = x + ε2 Rx ⇒ x = z − ε2 Rz + . . . , (64)

where R : X → X is a time-independent linear operator, dots denote terms of
order O(ε3). Then we obtain the following equation for z(t):

zt + i(B0 + ε2 B̃1)z + εA0z + . . . = 0, B̃1 = B1 + (RB0 − B0 R). (65)

Neglecting terms of order O(ε3), we obtain a family of “Burnett equations” that
depends on arbitrary operator R. Each member of this family has formally the
same order of approximation as the usual Burnett equations with R = 0. It is now
easy to find the operator R that “kills” above discussed instabilities. The reason
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for instabilities is that B1 in Eq. (62) is not symmetric. Hence, we need to choose
R in such a way that

B̃1 = B1 + RB0 − B0 R

is real and symmetric. Assuming that R : X → X is also real and symmetric we
obtain

RB0 − B0 R = 1

2
(B∗

1 − B1) = 1

2
[(P B)2 U 2 B P − P BU 2 (B P)2], B0 = P B P.

Then

B0

(
R + 1

2
P BU 2 B P

)
=

(
R + 1

2
P BU 2 B P

)
B0,

and this obviously leads to the simplest choice

R = −1

2
P BU 2 B P,

that satisfies our assumptions (R is real and symmetric). Thus, the following
statement is proved.

Proposition 1. The substitution

z = x − ε2

2
PBU2BPx + . . . , x = z + ε2

2
PBU2BPz + . . . , (66)

leads to “symmetric” Burnett equations

zt + i

[
PBP + ε2

2
PB(U 2BP + PBU2 − 2UBU)BP

]
z

+εPBUBPz = 0, z ∈ X, (67)

satisfying

1

2

d

dt
‖z‖2 = −ε(Bz, U Bz) ≤ 0. (68)

Eq. (68) follows from the general identity (54) and semi-positivity of U
(58). We can now use Eqs. (66) , (67) for the linearized Boltzmann equation (51)
written in the form (52) and derive “symmetric” linearized Burnett equations.
It is, however, more important to consider the nonlinear case. The same idea
of substitutions (64) (with a nonlinear operator R) can be used for nonlinear
equations of hydrodynamics. Then we hope to obtain a generalized version of
nonlinear Burnett equations that corresponds to Eqs. (67) in the linearized case.
We shall try to realize this program in Sections 6–7.
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6. EQUATIONS OF HYDRODYNAMICS

AND THEIR TRANSFORMATION

We return now to notations of Sections 2,3 and consider Eqs. (8). Our aim
is to find a class of transformations (ρ, u, T ) → (ρ ′, u′, T ′) that can “regularize”
the Burnett equations. If we assume that these transformations preserve a form
of conservation laws (8), then it is easy to determine at least one of appropriate
classes.

Proposition 2. Let Pαβ(x, t) = Pβα(x, t) and Qα(x, t) (α, β = 1, 2, 3) be arbi-
trary tensor and vector respectively. Then the substitution

ρ ′ = ρ, ρ ′u′ = ρu + θε2w, ρ ′(
∣∣u′∣∣2 + 3T ′) = ρ(|u|2 + 3T ) + 2θε2s, (69)

where θ is a parameter (real number),

wα = ∂

∂xβ

Pαβ, s = ∂

∂xα

(uβ Pαβ + Qα), α, β = 1, 2, 3, (70)

transforms Eqs. (8) to the following form (primes are omitted below):

ρt + div ρu = θε2div w,

∂

∂t
ρuα + ∂

∂xβ

(
ρ(uαuβ + T δαβ) + επαβ

)
= θε2 ∂

∂xβ

[
uαwβ + uβwα + 2

3
Uδαβ + ∂ Pαβ

∂t
+ O(ε)

]
,

1

2

∂

∂t
ρ
(|u|2 + 3T

) + 1

2
div ρu

(|u|2 + 5T
) + ε

∂

∂xα

(
παβuβ + qα

)
= θε2 ∂

∂xα

[
wα

|u|2 + 5T

2
+
(

s + 2

3
U

)
uα + ∂

∂t
(Pαβuβ + Qα) + O(ε)

]
,

U = s − u · w = Pαβ

∂uα

∂xβ

+ div Q.(71)

Remark 2. The notations Pαβ and Qα for arbitrary functions in Eqs. (70) should
not be confused with notations of Eqs. (27),(28). We shall see below that the
“correct” choice of Pαβ and Qα coincides with Eqs. (28) and this explains why
we use the same notation.

The proof of Proposition 2 is straightforward and therefore we omit it. Note
that the scalar U (x, t) is directly related to the temperature T :

T ′ = T + 2

3

θε2

ρ
U + O(ε4) (72)
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We omit terms of order O(ε3) in Eqs. (71) and study the resulting equations.
It is convenient to transform them to more explicit form. We denote

Gαβ = D0 Pαβ + Pαβ div u − Pαγ

∂uβ

∂xγ

,D0 = ∂

∂t
+ u · ∂

∂x
,

Sα = D0 Qα + Qα div u − Qβ

∂uα

∂xβ

+ PαβD0uβ + T wα, α, β = 1, 2, 3. (73)

Then it is easy to verify that

∂

∂xβ

(
Gαβ − ∂

∂t
Pαβ − uβwα

)
= 0,

∂

∂xα

[
Gβαuβ + Sα − ∂

∂t
(Pαβuβ + Qα) − suα − T wα

]
= 0

where s and w are given in Eqs. (70). Therefore Eqs. (71) (without terms of order
O(ε3)) can be transformed to the form

ρt + div (ρu − θε2w) = 0,

∂

∂t
ρuα + ∂

∂xβ

[
ρ(uβ − θε2wβ)uα + (p − 2

3
θε2U )δαβ + επαβ − θε2Gαβ

]
= 0,

1

2

∂

∂t
ρ
(|u|2 + 3T

) + ∂

∂xα

[
1

2
(ρuα − θε2wα)

(|u|2 + 3T
)

+uα

(
p − 2

3
θε2U

)
+ ε(παβ − θεGβα)uβ + εqα − θε2Sα

]
= 0, p = ρT . (74)

Finally we present the equations in the explicit (with respect to the time-
derivatives) form:

ρt + div J = 0, Jα = ρuα − θε2 ∂

∂xβ

Pαβ,

ρ
∂uα

∂t
+ Jβ

∂uα

∂xβ

+ ∂ p̃

∂xα

+ ε
∂π̃αβ

∂xβ

= 0,

3

2

(
ρ

∂T

∂t
+ Jβ

∂T

∂xβ

)
+ p̃ div u + ε

(
π̃αβ

∂uα

∂xβ

+ div q̃

)
= 0, (75)

where

p̃ = p − 2

3
θε2U, U = Pαβ

∂uα

∂xβ

+ div Q,

π̃αβ = παβ − θεGαβ, q̃α = qα − θεSα, α, β = 1, 2, 3. (76)
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We can also simplify Eqs. (73) since D0u = ρ−1∇ p + O(ε). Therefore

PαβD0uβ + T wα = − 1

ρ
Pαβ

∂p

∂xβ

+ T
∂

∂xβ

Pαβ + O(ε) = ρT 2 ∂

∂xβ

Pαβ

ρT
+ O(ε).

Hence, Gαβ and Sα in Eqs. (76) can be calculated (with the same accuracy)
by formulas

Gαβ = D0 Pαβ + Pαβ div u − Pαγ

∂uβ

∂xγ

,

Sα = D0 Qα + Qα div u − Qβ

∂uα

∂xβ

+ ρT 2 ∂

∂xβ

Pαβ

ρT
. (77)

Thus, Eqs. (75) − (77) define uniquely a set of equations of hydrodynamics
in new variables (69) provided (i) παβ and qα in Eqs. (8) are known and (i i)
arbitrary functions Pαβ(x, t), Qα(x, t) (70) and the parameter θ are fixed. It is
obvious that this transformation makes sense if and only if παβ and qα are evalu-
ated at the Burnett level (see Eqs. (23)). All considerations, however, remain the
same if we consider higher approximations for παβ and qα . In such cases we just
need to choose εn , n > 2, instead of ε2 in Eqs. (70) and this again leads to equa-
tions similar to Eqs. (75). The same is true for n = 1 (generalized Navier-Stokes
equations).

We shall see below that this transformation leads to well-posed (hyperbolic)
Burnett equations.

7. HYPERBOLICITY AND LINEARIZED H-THEOREM

We assume now that παβ and qα in Eqs. (76) are given in Eqs. (23) , (27) (see
also more explicit formulas (33) and (40) , (41) for Navier-Stokes terms). Then we
choose Pαβ(x, t) and Qα(x, t) in Eqs. (70) , (75) , (76) in the form given in Eqs.
(29), i.e.

Pαβ = A

ρ

∂uα

∂xβ

, Qα = B

ρ

∂T

∂xα

,

where A(T ) and B(T ) are given in Eqs. (30). The terms D0 Pαβ and D0 Qα in
Eqs. (77) should be evaluated at the “Euler approximation.” This was already
done in Section 3, see Eqs. (32). Hence, all terms in Eqs. (75) − (77) are uniquely
determined, except for the parameter θ . Then we can consider Eqs. (75) − (77)
as a one-parameter family of generalized Burnett equations. In order to find an
appropriate value of θ we repeat for Eqs. (75) the same considerations as for
classical Burnett equations (the end of Section 3). Keeping just terms with higher

388



Instabilities in the Chapman-Enskog Expansion and Hyperbolic Burnett

derivatives we obtain

ρt = θε2 ∂2

∂xα∂xβ

A

ρ

∂uα

∂xβ

+ . . . = 2

3
θε2 A

ρ
� div u + . . . ,

ρ
∂uα

∂t
= −ε2 ∂

∂xβ

π B
αβ + θε2

(
2

3

∂U

∂xα

+ ∂Gαβ

∂xβ

)
+ . . .

= −ε2 ∂

∂xβ

π B
αβ + 2θε2

3ρ

∂

∂xα

(
B � T − A

ρ
� ρ

)
+ . . . ,

3

2
ρTt = −ε2div q B + θε2div S + . . .

= −ε2div q B + 2θε2

3ρ
T (A − B) � div u + . . . , (78)

The contribution of Burnett terms π B and q B was already found (see Eqs.
(33)). Then, we consider again 1d solutions and obtain, omitting terms with lower
derivatives,

∂

∂t

 ρ

u
T

 = 2

3

ε2

ρ
M(θ )

(
∂

∂x

)3
 ρ

u
T

 + . . . , x ∈ R, u ∈ R.

The matrix M(θ ) reads

M(θ ) =
 0 0 0

AT
ρ

0 A − C

0 2(B−C)T
3 0

 + θ

 0 ρ A 0
− AT

ρ
0 B − A

0 2(A−B)T
3 0

 ,

where the first term M(0) corresponds to usual Burnett equations (see. Eq. (37)).
One can easily guess (by analogy with linear theory of Sections 4,5) that the best
result is achieved for θ = 1/2. In such a case we obtain

M(1/2) = 1

2

 0 ρ A 0
AT
ρ

0 A + B − 2C

0 2T
3 (A + B − 2C) 0

 .

The eigenvalues of M(1/2) are obviously real

λ = 0, λ = ±2T 1/2

2

[
2

3
(A + B − 2C)2 + A2

]1/2

provided T > 0. Thus the generalized Burnett equations are hyperbolic for any
intermolecular potential (that defines coefficients A(T ), B(T ), C(T ), see Eqs.
(30)) if θ = 1/2 and T > 0. Therefore we fix the value θ = 1/2 and call the
corresponding Eqs. (75) − (78) “Hyperbolic Burnett equations” (HBEs).
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Let us check that HBEs guarantee the stability of any constant (equi-
librium) solution ρ = ρ0 > 0, T = T0 > 0, u = u0 = 0 (the equations are
obviously Galilei-invariant, therefore we can always choose u0 = 0). We
denote

ρ = ρ0[1 + ρ ′(x, t ′)], u = T 1/2
0 u′(x, t ′), T = T0[1 + T ′(x, t ′)], t ′ = T 1/2

0 t

and consider linearized HBEs. Then the terms with third derivatives can be taken
from Eqs. (78) , (33). The terms with second derivatives appear due to Navier-
Stokes terms (40) , (41). We obtain after simple calculations the following set of
linear equations (primes are omitted):

ρt + div u = a � div u,

ut + ∇ρ + ∇T = c

(
�u + 1

3
∇div u

)
+ a∇(�ρ) + b∇(�T ),

3

2
Tt + div u = d � T + b � div u, (79)

where

a = ε2 A(T0)

3ρ2
0

, b = ε2

3ρ2
0

[A(T0) + B(T0) − 2C(T0)], c = ε
µ(T0)

ρ0T 1/2
0

, d = ε
λ(T0)

ρ0T 1/2
0

,

(80)
in the notations of Eqs. (30) , (41).

We introduce “H -function”

H (x, t) = 1

2

(
ρ2 + |u|2 + 3

2
T 2

)
, (81)

then

∂ H

∂t
+ div [(ρ + T )u] = cu · (�u + 1

3
∇div u) + dT � T +

+a[ρ � div u + u · ∇(�ρ)] + b[T � div u + u · ∇(�T )].

The identity

g � div u + u · ∇(�g) = div �(u, g),�(u, g) = �g + g(∇div u) − (∇g)div u,

holds for any (smooth) scalar g(x) and vector u(x). Therefore we obtain

∂ H

∂t
+ div [(ρ + T )u − �(u, aρ + bT )] = cu ·

(
�u + 1

3
∇div u

)
+ dT � T .
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Assuming that ρ(x, t), u(x, t) and T (x, t) decay fast enough if |x | → ∞, we
obtain “H -theorem”

d

dt

∫
R3

dx H (x, t) = −c

∫
R3

dx

[(
∂uα

∂xβ

)2

+ 1

3
(div u)2

]
− d

∫
R3

dx |∇T |2 ≤ 0,

(82)
where the summation over α, β = 1, 2, 3 is assumed. The inequality follows from
obvious positivity of c and d (see Eqs. (80) , (41)). This proves that any con-
stant solution of HBEs (with positive ρ0 and T0) is stable for any intermolecular
potential.

8. HYPERBOLIC BURNETT EQUATIONS

We explain below the meaning and the structure of HBEs, assuming that
all terms in the classical Burnett equations are known. HBEs are equations for
auxiliary variables for which we keep the initial notations ρ(x, t), u(x, t) and
T (x, t). The true hydrodynamical variables (ρ tr , utr , T tr ) are expressed through
(ρ, u, T ) by equalities (with accuracy O(ε2))

ρ tr = ρ, utr
α = ûα(ρ, u, T ) = uα − ε2

2ρ

∂

∂xβ

A

ρ

∂uα

∂xβ

,

T tr = T̂ (ρ, u, T ) = T − ε2

3ρ

(
A

ρ

∂uα

∂xβ

∂uα

∂xβ

+ ∂

∂xα

B

ρ

∂T

∂xα

)
, α, β = 1, 2, 3, (83)

where A(T ) and B(T ) are the Burnett coefficients defined in Eqs. (30).
The equations for (ρ, u, T ) read

ρt + div ρû = 0, ρ

(
∂

∂t
+ û · ∂

∂x

)
uα + ∂�αβ

∂xβ

= 0,

3

2
ρ

(
∂

∂t
+ û · ∂

∂x

)
T + �αβ

∂uα

∂xβ

+ εdiv g = 0, (84)

or, equivalently,

ρt + div ρû = 0,
∂

∂t
ρuα + ∂

∂xβ

(ρuα ûβ + �αβ) = 0,

∂

∂t
ρ(|u|2 + 3T ) + ∂

∂xα

[ρûα(|u|2 + 3T ) + 2(�βαuβ + εgα)] = 0, (85)
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where

�αβ = ρT̂ δαβ − 2εµ
∂uα

∂xβ

+ ε2

(
π B

αβ − 1

2
Gαβ

)
,

gα = −λ
∂T

∂xα

+ ε

(
q B

α − 1

2
Sα

)
, α, β = 1, 2, 3. (86)

The notations µ = µ(T ), λ = λ(T ) and π B
αβ , q B

α correspond respectively to
the Navier-Stokes coefficients and the Burnett terms that were discussed in detail
in Section 3. The additional terms Gαβ and Sα were defined in Eqs. (77) (note that
Gαβ �= Gβα and therefore �αβ �= �βα!). We present below more explicit formulas
for these terms:

Gαβ = G(0)
αβ + A

ρ

(
∂uα

∂xβ

div u − ∂uα

∂xγ

∂uβ

∂xγ

)
,

Sα = S(0)
α + B

ρ

(
∂T

∂xα

div u − ∂T

∂xβ

∂uα

∂xβ

)
+ ρT 2 ∂

∂xβ

A

ρ2T

∂uα

∂xβ

, (87)

where

G(0)
αβ = D0 Pαβ = − A

ρ

(
∂

∂xα

1

ρ

∂p

∂xβ

+ ∂uα

∂xγ

∂uγ

∂xβ

)
+ 1

ρ

(
A − 2

3
T

d A

dT

)
∂uα

∂xβ

div u,

S(0)
α = D0 Qα = − B

ρ

(
2

3

∂

∂xα

T div u + ∂uβ

∂xα

∂T

∂xβ

)
+ 1

ρ

(
B − 2

3
T

d B

dT

)
∂T

∂xα

div u,

p = ρT, α, β, γ = 1, 2, 3. (88)

The reader might think that the additional terms make HBEs much more
sophisticated as compared to the classical Burnett equations. Fortunately this is
not true, since both Gαβ and π B

αβ (Sα and q B
α respectively) are, roughly speaking,

linear combinations of similar terms. We remind to the reader (see Section 3) that

π B
αβ = G(0)

αβ + 1

ρ

∂

∂xα

C
∂T

∂xβ

− �αβ

ρ
,

q B
α = S(0)

α + 1

ρ

∂

∂xβ

CT
∂uα

∂xβ

− �α

ρ
, α, β = 1, 2, 3, (89)

where C(T ), �αβ , �α are defined in Eqs. (28) , (30).
It should be stressed that HBEs (84) − (89) are hyperbolic and satisfy the lin-

earized H -theorem (82) for any choice of coefficients A(T ), B(T ), C(T ) provided
T > 0. These properties do not depend on �αβ and �α in Eqs. (89). All above
terms can be computed exactly in the case of Maxwell molecules that corresponds
to the cross-section σ (|u| , cos θ ) = |u|−1 g (cos θ ) in Eq. (2). Then obtain after
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some calculations

µ(T ) = ηT, λ(T ) = 15

4
ηT, η−1 = 3π

2

1∫
−1

dµ g(µ)(1 − µ2),

ϕαβ = −ηcαcβ, ϕα = −3

4
ηcα(|c|2 − 5T ), A(T ) = 2η2T, B(T ) = 45

8
η2T ,

C(T ) = 3η2T,�αβ = 〈
F0,Dϕαβ

〉 = −4η2T
∂uα

∂xγ

∂uβ

∂xγ

,

�α = 〈F0,Dϕα〉 = −3η2T

[(
4

∂T

∂xβ

− 1

ρ

∂p

∂xβ

)
∂uα

∂xβ

+ 15

8

∂T

∂xβ

∂uα

∂xβ

+ 5

4

∂T

∂xα

div u

]
. (90)

In the general case we can use the standard approximation [8]

λ(T ) = 15

4
µ(T ), ϕαβ = −µ

T
cαcβ, ϕα = −3µ

4
cα(|c|2 − 5T ), (91)

that leads (see Eqs. (45)) to equalities

A = 2
µ2

T
, B = 45

8

µ2

T
, C = 3

µ2

T
. (92)

The corresponding approximate formulas for π B
αβ and q B

α are well-known [8, 16]
(see also [21]). These formulas, combined with Eqs. (84) − (89) , (91), define
approximate HBEs for general intermolecular potential.

The most general formulas for π B
αβ and q B

α (without the assump-
tion (91)) express these quantities through 11 coefficients {ω1(T ), . . . ,
ω6(T ); θ1(T ), . . . , θ5(T )} that depend on intermolecular potential [10]. It was
recently proved by Slemrod that ω3 + ω4 + θ3 = 0 [21]. This identity becomes
almost obvious if we use the notations of the present paper. Then it is easy to
verify by comparison with [10] that

ω3 = 1

5T

〈
ϕαβ, ϕαcβ

〉
M

= T C(T ), ω4 = −1

5

〈
ϕα,

∂ϕαβ

∂cβ

〉
M

,

θ3 = −1

5

〈
ϕαβ,

∂ϕα

∂cβ

〉
M

, (93)

where the functions ϕα(c; T ), ϕαβ (c; T ) (α, β = 1, 2, 3) are given in Eqs. (19).
The Slemrod identity follows from Eqs. (93) after integration by parts.
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APPENDIX. A. COMPLETE CHAPMAN-ENSKOG EXPANSION FOR

LINEAR EQUATIONS

This part of the paper can be considered as a continuation of Section 4, the
same notations are used below. We consider the Cauchy problem (52)

εut + L(iε)u = 0, u|t=0 = u0;L(κ) = A + κ B, (A1)

under the assumptions [i]–[iii]. Our goal is to understand the general structure
of the Chapman-Enskog expansion and to show why the change of coordinates
(hydrodynamical variables for the linearized Boltzmann equation (49)) seems to
be very natural for this problem.

Let us consider the operator L(κ) : E → E for small complex κ , |κ| < r0.
First we assume that dim E < ∞. Then, for any real κ ∈ R, the operator L(κ) is
symmetric and therefore

L(κ) =
s∑

j=1

λ j (κ)Q j (κ),s = dim E, (A2)

where λ j (κ) are eigenvalues and Q j (κ) are corresponding one-dimensional proper
projectors of L(κ). We assume below that ker L(κ) = ∅ if κ �= 0, |κ| < r0. It is well
known that that λ j (κ) and Q j (κ) are analytic functions of κ in some neighborhood
|κ| < r0 of κ = 0 [15]. Then, by analytic continuation, Eq. (A2) holds for small
complex κ , though the projectors Q j (κ) are orthogonal (Q∗

j = Q j ) only for real
κ . The identity (54) implies that Reλ j (iε) ≥ 0 for ε > 0. We can denumerate the
eigenvalues in such a way that

λ1(0) = . . . = λm(0) = 0;λ j (0) > 0, m + 1 ≤ j ≤ s,

where λ j (0), j ≥ m + 1, are positive eigenvalues of A. Then the solution of the
problem (A1) reads

u(t ; ε) = exp

[
− t

ε
L(iε)

]
u0 = w(t ; ε) + O(e− ct

ε ), (A3)

where c is a positive constant, t > 0, ε → 0+,

w(t ; ε) =
m∑

k=1

e− t
ε
λk (iε) Qk(iε)u0, λk(κ) = O(κ), k = 1, . . . , m. (A4)

Following Grad [12], we call w(t ; ε) the normal solution of the problem (A1).

Remark 3: The simplified assumption dim E < ∞ leads immediately to the es-
timate (A3). The same estimate, however, can be obtained in many cases when
dim E = ∞. In particular, such estimate for the linearized Boltzmann equation
(hard sphere model) was proved long ago by Arsen’ev [2].
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Hence, in order to study asymptotics for small positive ε it is sufficient to
consider the normal solution w(t ; ε). We note that

w(t ; ε) = �(iε)u(t ; ε),�(κ) =
m∑

j=1

Q j (κ),

where �(κ) is an m-dimensional proper projector of L(κ) obtained by perturbation
of the orthogonal projector P = �(0) onto the subspace X = N(A) (see Eqs.
(55) , (56)). Fortunately the general formulas for �(κ) are known [15]. We just need
to apply them to the particular case of L(κ) (A1). Omitting details of calculations,
we obtain

�(κ) =
∞∑

n=0

κn Q(n), Q(0) = P, Q(n) = Res

{
1

zn+1
C(z)[BC(z)]n

}
, n = 1, . . . ,

(A5)
where

Res F(z) = limr→0+
1

2π i

∮
|z|=r

F(z) dz,

C(z) = P −
∞∑

n=1

znU n, U = (1 − P)A−1(1 − P) (A6)

(note that U is the same as in Eq. (58) since (1 − P)A−1 = A−1(1 − P), (1 −
P)2 = (1 − P)). The calculation of residues in Eqs. (A5) is very simple since all
operator-valued functions are represented by series

F(z) =
∞∑

k=−n

Fk zk, n = 2, 3, . . . , (A7)

then Res F(z) = F−1.
Now we can construct the complete Chapman-Enskog expansion. We fix a

small ε > 0 and simplify notations by denoting

Q = �(iε) =
∞∑

n=0

(iε)n Q(n), L = L(iε), u = u(t ; ε), w = w(t ; ε), (A8)

and so on. Then the vector

x(t ; ε) = x = Pw = PQu (A9)

describes for ε → 0 the “hydrodynamical” part of the solution. The equation for
x reads

εxt + PQLu = 0, x |t=0 = PQu0. (A10)
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In order to close this equation we note that the projector Q was constructed in
such a way that QL = L Q. Hence, it is sufficient to express w = Qu through x .
This can be done in the following way.

We consider the operator identities [15] that hold for any pair of projectors
P and Q (i.e. operators such that P2 = P , Q2 = Q):

PT = TP = PQP, QT = TQ = QPQ, T = 1 − (P − Q)2.

If ‖P − Q‖ < 1, then T is invertible and

Q = T −1 Q P Q = (Q P)T −1 (P Q) .

By applying this identity to Eq. (A10) we obtain

εxt = −PQLu = −PQLQu = −(PQLQP)T −1 (P Qu) . (A11)

On the other hand, x = PQu (see Eq. (A9)) and we obtain

εxt + (PQLQP)T −1x = 0, x |t=0 = PQu0. (A12)

We note that L = A + iεB, QL = LQ, PA = AP = 0, therefore

PQLQP = iεPQBP = iεPBQP. (A13)

Let us consider the vector x ′ = T −1x . Then Px ′ = x ′ since Px = x and PT =
TP = PQP. Hence,

x = Tx′ = TPx′ = PQPx′. (A14)

By using Eqs. (A13) , (A14) we transform Eq. (A12) to the following form

xt + i�x ′ = 0, x = Gx ′, G = PQP,� = PBQP. (A15)

Note that both operators � and G act from X to X, X = N(A), and are repre-
sented by power series in ε through the projector Q = �(iε) (A8). The condition
‖P − Q‖ < 1 is satisfied for ε → 0 and therefore there exist a unique operator
G−1 : X → X. Hence, the equation for x = x(t ; ε) reads

xt + i�G−1x = 0, x |t=0 = PQu0. (A16)

Explicit formulas for � and G can be easily obtained from Eqs.
(A5) , (A6) , (A15). We note that PC(z) = C(z)P = P , therefore

� = P

( ∞∑
n=0

(iε)n�n

)
P, G = P

( ∞∑
n=0

(iε)nGn

)
P, (A17)

where

�0 = B,�1 = −BU B,�n = Res

[
B[C(z)B]n

zn+1

]
,

G0 = 1, G1 = 0, Gn = Res

[
B[C(z)B]n−1

zn+1

]
, n = 2, 3, . . . , (A18)
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all residues are calculated by using the Laurent series (A7).
It is clear that the representation in the form of power series (in ε) is unique.

Therefore we obtain the following result.

Proposition 3. The complete Chapman-Enskog expansion for Eq. (A1) leads
to Eqs. (A16), where the operator G−1 : X → X is obtained by inversion of the
power series (A17) for G, i.e.

G−1 = P

{
1 + ε2 Res

[
BC(z)B

z3

]
+ . . .

}
P. (A19)

The correct initial conditions are also given in Eqs. (A16). The power series for
� and G−1 are convergent for |ε| < r0 with sufficiently small r0 > 0 provided
dim E < ∞.

The latter statement follows from general results of the perturbation theory
in finite-dimensional spaces [15]. Probably a similar statement can be proved
for the Fourier-transformed Boltzmann equation (51) (hard sphere model) with
sufficiently small |k|. We, however, do not consider a problem of convergence in
this paper.

Thus, we know the general form of “equations of hydrodynamics” (A16).
The operators � and G can be represented as

� = �(0)(ε2) + iε�(1)(ε2), G = G(0)(ε2) + iεG(1)(ε2), (A20)

where both �(0,1), G(0,1) are real symmetric operators, such that

�(0) = P B P − ε2 P B(U BU − U 2 B P − P BU 2)B P + O(ε4),

G(0) = P + ε2 P BU 2 B P + O(ε4),�(1) = −P BU B P + O(ε2), G(1) = O(ε2).

This leads precisely to Eqs. (60). Thus, the loss of symmetry (discussed at the end
of Section 4) is caused by a special structure of the operator �G−1 (a product
of two “quasi-symmetric” operators of the form (A20)). Roughly speaking, the
operator � is responsible for the dynamics, whereas the operator G = P Q P is
related to the choice of coordinates. A natural “symmetrization” of the operator
�G−1 can be obtained by substitution

x = G1/2z, z ∈ X (A21)

(the vector z ∈ X should not be confused with the traditional notation for complex
variable in Eqs. (A18) , (A19)). Then we obtain the equation

zt + i H z = 0, H = G−1/2�G−1/2, z|t=0 = G−1/2 P Qu0,
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where the operator G−1/2 : X → X is defined in the usual way

G−1/2 = P

[
1 − ε2

2
BU 2 B + O(ε3)

]
P.

Then

H = H0(ε2) + iεH1(ε2),

where both H0 and H0 are real symmetric operators. Therefore (see Eq. (54))

1

2

d

dt
‖z‖2 = ε(H1(ε2)z, z)

i.e. H0(ε2) does not influence this equality. The substitution (66) can be understood
now as the first step of the general symmetrizing substitution (A21).
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